Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Endocrinology ; 165(3)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38066676

RESUMO

Estrogen actions are mediated by both nuclear (n) and membrane (m) localized estrogen receptor 1 (ESR1). Male Esr1 knockout (Esr1KO) mice lacking functional Esr1 are infertile, with reproductive tract abnormalities. Male mice expressing nESR1 but lacking mESR1 (nuclear-only estrogen receptor 1 mice) are progressively infertile due to testicular, rete testis, and efferent ductule abnormalities similar to Esr1KO males, indicating a role for mESR1 in male reproduction. The H2NES mouse expresses only mESR1 but lacks nESR1. The goal of this study was to identify the functions of mESR1 alone in mice where nESR1 was absent. Breeding trials showed that H2NES males are fertile, with decreased litter numbers but normal pup numbers/litter. In contrast to Esr1KO mice, H2NES testicular, and epididymal weights were not reduced, and seminiferous tubule abnormalities were less pronounced. However, Esr1KO and H2NES males both had decreased sperm motility and a high incidence of abnormal sperm morphology. Seminiferous tubule and rete testis dilation and decreased efferent ductule epithelial height characteristic of Esr1KO males were reduced in H2NES. Consistent with this, expression of genes involved in fluid transport and ion movement that were reduced in Esr1KO (Aqp1, Car2, Car14, Cftr) were partially or fully restored to wild-type levels in H2NES. In summary, in contrast to Esr1KO males, H2NES males are fertile and have reduced phenotypic and functional abnormalities in the testis and efferent ductules. Thus, mESR1 alone, in the absence of nESR1, can partially regulate male reproductive tract structure and function, emphasizing its importance for overall estrogen action.


Assuntos
Receptor alfa de Estrogênio , Motilidade dos Espermatozoides , Masculino , Camundongos , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Motilidade dos Espermatozoides/genética , Sêmen/metabolismo , Estrogênios , Camundongos Knockout , Fertilidade/genética
2.
Br J Pharmacol ; 180 Suppl 2: S223-S240, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123152

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16179. Nuclear hormone receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Ligantes , Proteínas de Membrana Transportadoras , Receptores Acoplados a Proteínas G , Receptores Citoplasmáticos e Nucleares
3.
Pharmacol Rev ; 75(6): 1233-1318, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586884

RESUMO

The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands. Furthermore, we also review recent studies that improved our understanding of NR structure and signaling. SIGNIFICANCE STATEMENT: Nuclear receptors (NRs) are ligand-regulated transcription factors that are critical regulators of myriad physiological processes. NRs serve as receptors for an array of drugs, and in this review, we provide an update on recent research into the roles of these drug targets.


Assuntos
Farmacologia Clínica , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Transporte , Ligantes
4.
Endocrinology ; 164(4)2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36718579

RESUMO

Several mouse models have been developed to study polycystic ovarian syndrome (PCOS), a leading cause of infertility in women. Treatment of mice with DHT for 90 days causes ovarian and metabolic phenotypes similar to women with PCOS. We used this 90-day DHT treatment paradigm to investigate the variable incidence and heterogeneity in 2 inbred mouse strains, NOD/ShiLtJ and 129S1/SvlmJ. NOD mice naturally develop type 1 diabetes, and recent meta-analysis found increased androgen excess and PCOS in women with type 1 diabetes. The 129S1 mice are commonly used in genetic manipulations. Both NOD and 129S1 DHT-treated mice had early vaginal opening, increased anogenital distance, and altered estrus cycles compared with control animals. Additionally, both NOD and 129S1 mice had reduced numbers of corpora lutea after DHT exposure, whereas NOD mice had decreased numbers of preantral follicles and 129S1 mice had reduced numbers of small antral follicles. NOD mice had increased body weight, decreased white adipocyte size, and improved glucose sensitivity in response to DHT, whereas 129S1 mice had increased body weight and white adipocyte size. NOD mice had increased expression of Adiponectin, Cidea, Srebp1a, and Srebp1b and 129S1 mice had decreased Pparg in the white adipose tissues, whereas both NOD and 129S1 mice had increased expression of Glut4 and Prdm16, suggesting DHT may differentially affect glucose transport, thermogenesis, and lipid storage in white adipose tissue. DHT causes different ovarian and metabolic responses in NOD and 129S1 mice, suggesting that strain differences may allow further elucidation of genetic contributions to PCOS.


Assuntos
Diabetes Mellitus Tipo 1 , Síndrome do Ovário Policístico , Humanos , Feminino , Camundongos , Animais , Síndrome do Ovário Policístico/metabolismo , Diabetes Mellitus Tipo 1/complicações , Camundongos Endogâmicos NOD , Modelos Animais de Doenças , Peso Corporal/fisiologia , Di-Hidrotestosterona
5.
Epigenetics ; 18(1): 2139986, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328762

RESUMO

Clinically, developmental exposure to the endocrine disrupting chemical, diethylstilboestrol (DES), results in long-term male and female infertility. Experimentally, developmental exposure to DES results in abnormal reproductive tract phenotypes in male and female mice. Previously, we reported that neonatal DES exposure causes ERα-mediated aberrations in the transcriptome and in DNA methylation in seminal vesicles (SVs) of adult mice. However, only a subset of DES-altered genes could be explained by changes in DNA methylation. We hypothesized that alterations in histone modification may also contribute to the altered transcriptome during SV development. To test this idea, we performed a series of genome-wide analyses of mouse SVs at pubertal and adult developmental stages in control and DES-exposed wild-type and ERα knockout mice. Neonatal DES exposure altered ERα-mediated mRNA and lncRNA expression in adult SV, including genes encoding chromatin-modifying proteins that can impact histone H3K27ac modification. H3K27ac patterns, particularly at enhancers, and DNA methylation were reprogrammed over time during normal SV development and after DES exposure. Some of these reprogramming changes were ERα-dependent, but others were ERα-independent. A substantial number of DES-altered genes had differential H3K27ac peaks at nearby enhancers. Comparison of gene expression changes, H3K27ac marks and DNA methylation marks between adult SV and adult uterine tissue from ovariectomized mice neonatally exposed to DES revealed that most of the epigenetic changes and altered genes were distinct in the two tissues. These findings indicate that the effects of developmental DES exposure cause reprogramming of reproductive tract tissue differentiation through multiple epigenetic mechanisms.


Assuntos
Dietilestilbestrol , Receptor alfa de Estrogênio , Animais , Camundongos , Masculino , Feminino , Dietilestilbestrol/farmacologia , Receptor alfa de Estrogênio/genética , Metilação de DNA , Estudo de Associação Genômica Ampla , Epigênese Genética , Expressão Gênica
6.
J Endocr Soc ; 6(9): bvac109, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37283844

RESUMO

Nongenomic effects of estrogen receptor α (ERα) signaling have been described for decades. Several distinct animal models have been generated previously to analyze the nongenomic ERα signaling (eg, membrane-only ER, and ERαC451A). However, the mechanisms and physiological processes resulting solely from nongenomic signaling are still poorly understood. Herein, we describe a novel mouse model for analyzing nongenomic ERα actions named H2NES knock-in (KI). H2NES ERα possesses a nuclear export signal (NES) in the hinge region of ERα protein resulting in exclusive cytoplasmic localization that involves only the nongenomic action but not nuclear genomic actions. We generated H2NESKI mice by homologous recombination method and have characterized the phenotypes. H2NESKI homozygote mice possess almost identical phenotypes with ERα null mice except for the vascular activity on reendothelialization. We conclude that ERα-mediated nongenomic estrogenic signaling alone is insufficient to control most estrogen-mediated endocrine physiological responses; however, there could be some physiological responses that are nongenomic action dominant. H2NESKI mice have been deposited in the repository at Jax (stock no. 032176). These mice should be useful for analyzing nongenomic estrogenic responses and could expand analysis along with other ERα mutant mice lacking membrane-bound ERα. We expect the H2NESKI mouse model to aid our understanding of ERα-mediated nongenomic physiological responses and serve as an in vivo model for evaluating the nongenomic action of various estrogenic agents.

7.
Br J Pharmacol ; 178 Suppl 1: S246-S263, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34529827

RESUMO

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15540. Nuclear hormone receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Ligantes , Proteínas de Membrana Transportadoras , Receptores Citoplasmáticos e Nucleares , Receptores Acoplados a Proteínas G
8.
Adv Pharmacol ; 92: 191-235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34452687

RESUMO

Sex-steroid receptors (SSRs) are essential mediators of estrogen, progestin, and androgen signaling that are critical in vast aspects of human development and multi-organ homeostasis. Dysregulation of SSR function has been implicated in numerous pathologies including cancers, obesity, Type II diabetes mellitus, neuroendocrine disorders, cardiovascular disease, hyperlipidemia, male and female infertility, and other reproductive disorders. Endocrine disrupting chemicals (EDCs) modulate SSR function in a wide variety of cell and tissues. There exists strong experimental, clinical, and epidemiological evidence that engagement of EDCs with SSRs may disrupt endogenous hormone signaling leading to physiological abnormalities that may manifest in disease. In this chapter, we discuss the molecular mechanisms by which EDCs interact with estrogen, progestin, and androgen receptors and alter SSR functions in target cells. In addition, the pathological consequences of disruption of SSR action in reproductive and other organs by EDCs is described with an emphasis on underlying mechanisms of receptors dysfunction.


Assuntos
Diabetes Mellitus Tipo 2 , Disruptores Endócrinos , Disruptores Endócrinos/toxicidade , Estrogênios , Feminino , Humanos , Masculino , Receptores Androgênicos , Reprodução
9.
Essays Biochem ; 65(6): 867-875, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34028522

RESUMO

Estrogen receptor (ER) is a member of the nuclear receptor superfamily whose members share conserved domain structures, including a DNA-binding domain (DBD) and ligand-binding domain (LBD). Estrogenic chemicals work as ligands for activation or repression of ER-mediated transcriptional activity derived from two transactivation domains: AF-1 and AF-2. AF-2 is localized in the LBD, and helix 12 of the LBD is essential for controlling AF-2 functionality. The positioning of helix 12 defines the ER alpha (ERα) ligand properties as agonists or antagonists. In contrast, it is still less well defined as to the ligand-dependent regulation of N-terminal AF-1 activity. It has been thought that the action of selective estrogen receptor modulators (SERMs) is mediated by the regulation of a tissue specific AF-1 activity rather than AF-2 activity. However, it is still unclear how SERMs regulate AF-1 activity in a tissue-selective manner. This review presents some recent observations toward information of ERα mediated SERM actions related to the ERα domain functionality, focusing on the following topics. (1) The F-domain, which is connected to helix 12, controls 4-hydroxytamoxifen (4OHT) mediated AF-1 activation associated with the receptor dimerization activity. (2) The zinc-finger property of the DBD for genomic sequence recognition. (3) The novel estrogen responsive genomic DNA element, which contains multiple long-spaced direct-repeats without a palindromic ERE sequence, is differentially recognized by 4OHT and E2 ligand bound ERα transactivation complexes.


Assuntos
Receptores de Estrogênio , Moduladores Seletivos de Receptor Estrogênico , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Ligantes , Ligação Proteica , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo
10.
J Neurosci ; 41(24): 5190-5205, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33941651

RESUMO

Hypertension susceptibility in women increases at the transition to menopause, termed perimenopause, a state characterized by erratic estrogen fluctuation and extended hormone cycles. Elucidating the role of estrogen signaling in the emergence of hypertension during perimenopause has been hindered by animal models that are confounded by abrupt estrogen cessation or effects of aging. In the present study, accelerated ovarian failure (AOF) in estrogen receptor ß (ERß) reporter mice was induced by 4-vinylcyclohexene diepoxide in young mice to model early-stage ovarian failure (peri-AOF) characteristic of peri-menopause. It was found that administering ERß agonists suppressed elevated blood pressure in a model of neurogenic hypertension induced by angiotensin II (AngII) in peri-AOF, but not in age-matched male mice. It was also found that ERß agonist administration in peri-AOF females, but not males, suppressed the heightened NMDAR signaling and reactive oxygen production in ERß neurons in the hypothalamic paraventricular nucleus (PVN), a critical neural regulator of blood pressure. It was further shown that deleting ERß in the PVN of gonadally intact females produced a phenotype marked by a sensitivity to AngII hypertension. These results suggest that ERß signaling in the PVN plays an important role in blood pressure regulation in female mice and contributes to hypertension susceptibility in females at an early stage of ovarian failure comparable to human perimenopause.


Assuntos
Receptor beta de Estrogênio/metabolismo , Hipertensão/metabolismo , Plasticidade Neuronal/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Perimenopausa/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Hipertensão/etiologia , Camundongos , Camundongos Endogâmicos C57BL
11.
FASEB J ; 35(5): e21563, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33818810

RESUMO

One of the endogenous estrogens, 17ß-estradiol (E2 ) is a female steroid hormone secreted from the ovary. It is well established that E2 causes biochemical and histological changes in the uterus. However, it is not completely understood how E2 regulates the oviductal environment in vivo. In this study, we assessed the effect of E2 on each oviductal cell type, using an ovariectomized-hormone-replacement mouse model, single-cell RNA-sequencing (scRNA-seq), in situ hybridization, and cell-type-specific deletion in mice. We found that each cell type in the oviduct responded to E2 distinctively, especially ciliated and secretory epithelial cells. The treatment of exogenous E2 did not drastically alter the transcriptomic profile from that of endogenous E2 produced during estrus. Moreover, we have identified and validated genes of interest in our datasets that may be used as cell- and region-specific markers in the oviduct. Insulin-like growth factor 1 (Igf1) was characterized as an E2 -target gene in the mouse oviduct and was also expressed in human fallopian tubes. Deletion of Igf1 in progesterone receptor (Pgr)-expressing cells resulted in female subfertility, partially due to an embryo developmental defect and embryo retention within the oviduct. In summary, we have shown that oviductal cell types, including epithelial, stromal, and muscle cells, are differentially regulated by E2 and support gene expression changes, such as growth factors that are required for normal embryo development and transport in mouse models. Furthermore, we have identified cell-specific and region-specific gene markers for targeted studies and functional analysis in vivo.


Assuntos
Biomarcadores/metabolismo , Estradiol/farmacologia , Tubas Uterinas/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/fisiologia , Oviductos/fisiologia , Análise de Célula Única/métodos , Animais , Estrogênios/farmacologia , Tubas Uterinas/citologia , Tubas Uterinas/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oviductos/citologia , Oviductos/efeitos dos fármacos , Receptores de Progesterona/fisiologia
12.
Front Physiol ; 12: 805784, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975547

RESUMO

Endometriosis is a debilitating disease that affects about 10% of reproductive-aged adolescents and women. The etiology of the disease is unknown; however, a prevailing hypothesis is that endometriosis develops from retrograde menstruation, where endometrial tissue and fluids flow back through the oviducts into the peritoneal cavity. There is no cure for endometriosis, and symptoms are treated palliatively. Despite the advances in knowledge, the complexity of endometriosis etiology is still unknown. Recent work by our group suggests that the initiation of endometriosis is immune-dependent. Using a mouse model of endometriosis, we hypothesized the initiation of endometriosis is immune regulated and uterine endometrium specific. In the absence of a functional immune system non-obese diabetic/severe combined immunodeficiency (NOD/SCID mice), endometriotic lesions did not form. Uterine endometrial tissue forms endometriotic lesions, whereas tissues with differing basal expression levels of estrogen receptor alpha (ESR1) and estrogen receptor beta (ESR2), similar cellular composition to uterus (i.e. bladder, mammary gland, and lung), and treated with estradiol did not form lesions. As MMP7 is known to play a major role in the organization/reorganization of the endometrium during the menstrual cycle, blocking metalloproteinase (MMP) activity significantly decreased the invasive properties of these cells. Together, these findings suggest that endometriosis is immune and uterine specific and that MMP7 likely plays a role in the ability of uterine tissue and the innate immune system to establish and maintain endometriotic lesions.

13.
Mol Metab ; 45: 101142, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33309599

RESUMO

OBJECTIVE: Erythropoietin (EPO), the cytokine required for erythropoiesis, contributes to metabolic regulation of fat mass and glycemic control. EPO treatment in mice on high-fat diets (HFD) improved glucose tolerance and decreased body weight gain via reduced fat mass in males and ovariectomized females. The decreased fat accumulation with EPO treatment during HFD in ovariectomized females was abrogated with estradiol supplementation, providing evidence for estrogen-related gender-specific EPO action in metabolic regulation. In this study, we examined the cross-talk between estrogen mediated through estrogen receptor α (ERα) and EPO for the regulation of glucose metabolism and fat mass accumulation. METHODS: Wild-type (WT) mice and mouse models with ERα knockout (ERα-/-) and targeted deletion of ERα in adipose tissue (ERαadipoKO) were used to examine EPO treatment during high-fat diet feeding and after diet-induced obesity. RESULTS: ERα-/- mice on HFD exhibited increased fat mass and glucose intolerance. EPO treatment on HFD reduced fat accumulation in male WT and ERα-/- mice and female ERα-/- mice but not female WT mice. EPO reduced HFD increase in adipocyte size in WT mice but not in mice with deletion of ERα independent of EPO-stimulated reduction in fat mass. EPO treatment also improved glucose and insulin tolerance significantly greater in female ERα-/- mice and female ERαadipoKO compared with WT controls. Increased metabolic activity by EPO was associated with browning of white adipocytes as shown by reductions in white fat-associated genes and induction of brown fat-specific uncoupling protein 1 (UCP1). CONCLUSIONS: This study clearly identified the role of estrogen signaling in modifying EPO regulation of glucose metabolism and the sex-differential EPO effect on fat mass regulation. Cross-talk between EPO and estrogen was implicated for metabolic homeostasis and regulation of body mass in female mice.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Eritropoetina/metabolismo , Eritropoetina/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Células 3T3-L1 , Adipócitos Brancos/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Índice de Massa Corporal , Dieta Hiperlipídica/efeitos adversos , Estrogênios/metabolismo , Feminino , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Homeostase , Masculino , Camundongos , Camundongos Knockout , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Proteína Desacopladora 1/metabolismo
14.
FASEB J ; 34(12): 16003-16021, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33064339

RESUMO

Estrogen receptor alpha (ERα) is a ligand-dependent transcription regulator, containing two transactivation functional domains, AF-1 and AF-2. The selective estrogen receptor modulators (SERMs), including 4-hydroxytamoxifen (4OHT), activate AF-1 preferentially rather than AF-2. However, it is unclear whether this specific function is related to the tissue-selective functionality of SERMs. Moreover, there is no information determining AF-1-dependent estrogenic-genes existing in tissues. We sought to identify AF-1-dependent estrogenic-genes using the AF-2 mutated knock-in (KI) mouse model, AF2ERKI. AF2ER is an AF-2 disrupted estradiol (E2)-insensitive mutant ERα, but AF-1-dependent transcription can be activated by the estrogen-antagonists, fulvestrant (ICI) and 4OHT. Gene profiling and ChIP-Seq analysis identified Klk1b21 as an ICI-inducible gene in AF2ERKI uterus. The regulatory activity was analyzed further using a cell-based reporter assay. The 5'-flanking 0.4k bp region of Klk1b21 gene responded as an ERα AF-1-dependent estrogen-responsive promoter. The 150 bp minimum ERα binding element (EBE) consists of three direct repeats. These three half-site sequences were essential for the ERα-dependent transactivation and were differentially recognized by E2 and 4OHT for the gene activation. This response was impaired when the minimum EBE was fused with a thymidine-kinase promoter but could be restored by fusion with the 100 bp minimum transcription initiation element (TIE) of Klk1b21, suggesting that the cooperative function of EBE and TIE is essential for mediating AF-1-dependent transactivation. These findings provide the first in vivo evidence that endogenous ERα AF-1 dominant estrogenic-genes exist in estrogen-responsive organs. Such findings will aid in understanding the mechanism of ERα-dependent tissue-selective activity of SERMs.


Assuntos
Receptor alfa de Estrogênio/genética , Ativação Transcricional/genética , Animais , Linhagem Celular Tumoral , Estradiol/genética , Antagonistas de Estrogênios/farmacologia , Estrogênios/genética , Feminino , Fulvestranto/farmacologia , Células Hep G2 , Humanos , Ligantes , Camundongos , Modelos Animais , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Sítio de Iniciação de Transcrição/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
15.
Sci Signal ; 13(650)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963012

RESUMO

A homozygous missense mutation in the gene encoding the estrogen receptor α (ERα) was previously identified in a female patient with estrogen insensitivity syndrome. We investigated the molecular features underlying the impaired transcriptional response of this mutant (ERα-Q375H) and four other missense mutations at this position designed to query alternative mechanisms. The identity of residue 375 greatly affected the sensitivity of the receptor to agonists without changing the ligand binding affinity. Instead, the mutations caused changes in the affinity of coactivator binding and alterations in the balance of coactivator and corepressor recruitment. Comparisons among the transcriptional regulatory responses of these six ERα genotypes to a set of ER agonists showed that both steric and electrostatic factors contributed to the functional deficits in gene regulatory activity of the mutant ERα proteins. ERα-coregulator peptide binding in vitro and RIME (rapid immunoprecipitation mass spectrometry of endogenous) analysis in cells showed that the degree of functional impairment paralleled changes in receptor-coregulator binding interactions. These findings uncover coupling between ligand binding and coregulator recruitment that affects the potency rather than the efficacy of the receptor response without substantially altering ligand binding affinity. This highlights a molecular mechanism for estrogen insensitivity syndrome involving mutations that perturb a bidirectional allosteric coupling between ligand binding and coregulator binding that determines receptor transcriptional output.


Assuntos
Receptor alfa de Estrogênio/genética , Estrogênios/metabolismo , Mutação de Sentido Incorreto , Coativador 1 de Receptor Nuclear/genética , Coativador 3 de Receptor Nuclear/genética , Sítios de Ligação/genética , Resistência a Medicamentos/genética , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Regulação da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Cinética , Ligantes , Simulação de Dinâmica Molecular , Coativador 1 de Receptor Nuclear/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Ligação Proteica , Domínios Proteicos
16.
Sci Transl Med ; 12(555)2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32759275

RESUMO

Obesity is heightened during aging, and although the estrogen receptor α (ERα) has been implicated in the prevention of obesity, its molecular actions in adipocytes remain inadequately understood. Here, we show that adipose tissue ESR1/Esr1 expression inversely associated with adiposity and positively associated with genes involved in mitochondrial metabolism and markers of metabolic health in 700 Finnish men and 100 strains of inbred mice from the UCLA Hybrid Mouse Diversity Panel. To determine the anti-obesity actions of ERα in fat, we selectively deleted Esr1 from white and brown adipocytes in mice. In white adipose tissue, Esr1 controlled oxidative metabolism by restraining the targeted elimination of mitochondria via the E3 ubiquitin ligase parkin. mtDNA content was elevated, and adipose tissue mass was reduced in adipose-selective parkin knockout mice. In brown fat centrally involved in body temperature maintenance, Esr1 was requisite for both mitochondrial remodeling by dynamin-related protein 1 (Drp1) and uncoupled respiration thermogenesis by uncoupled protein 1 (Ucp1). In both white and brown fat of female mice and adipocytes in culture, mitochondrial dysfunction in the context of Esr1 deletion was paralleled by a reduction in the expression of the mtDNA polymerase γ subunit Polg1 We identified Polg1 as an ERα target gene by showing that ERα binds the Polg1 promoter to control its expression in 3T3L1 adipocytes. These findings support strategies leveraging ERα action on mitochondrial function in adipocytes to combat obesity and metabolic dysfunction.


Assuntos
Adipócitos Marrons , Receptor alfa de Estrogênio , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Termogênese , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
17.
Endocrinology ; 161(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32623449

RESUMO

At birth, all female mice, including those that either lack estrogen receptor α (ERα-knockout) or that express mutated forms of ERα (AF2ERKI), have a hypoplastic uterus. However, uterine growth and development that normally accompany pubertal maturation does not occur in ERα-knockout or AF2ERKI mice, indicating ERα-mediated estrogen (E2) signaling is essential for this process. Mice that lack Cyp19 (aromatase knockout, ArKO mice), an enzyme critical for E2 synthesis, are unable to make E2 and lack pubertal uterine development. A single injection of E2 into ovariectomized adult (10 weeks old) females normally results in uterine epithelial cell proliferation; however, we observe that although ERα is present in the ArKO uterine cells, no proliferative response is seen. We assessed the impact of exposing ArKO mice to E2 during pubertal and postpubertal windows and observed that E2-exposed ArKO mice acquired growth responsiveness. Analysis of differential gene expression between unexposed ArKO samples and samples from animals exhibiting the ability to mount an E2-induced uterine growth response (wild-type [WT] or E2-exposed ArKO) revealed activation of enhancer of zeste homolog 2 (EZH2) and heart- and neural crest derivatives-expressed protein 2 (HAND2) signaling and inhibition of GLI Family Zinc Finger 1 (GLI1) responses. EZH2 and HAND2 are known to inhibit uterine growth, and GLI1 is involved in Indian hedgehog signaling, which is a positive mediator of uterine response. Finally, we show that exposure of ArKO females to dietary phytoestrogens results in their acquisition of uterine growth competence. Altogether, our findings suggest that pubertal levels of endogenous and exogenous estrogens impact biological function of uterine cells later in life via ERα-dependent mechanisms.


Assuntos
Estradiol/administração & dosagem , Infertilidade Feminina/prevenção & controle , Maturidade Sexual/efeitos dos fármacos , Anormalidades Urogenitais/tratamento farmacológico , Útero/anormalidades , Útero/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Esquema de Medicação , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Feminino , Fertilidade/efeitos dos fármacos , Fertilidade/genética , Infertilidade Feminina/genética , Masculino , Camundongos , Camundongos Knockout , Maturidade Sexual/fisiologia , Fatores de Tempo , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/fisiopatologia , Útero/fisiologia , Útero/fisiopatologia
18.
Yale J Biol Med ; 93(2): 291-305, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32607090

RESUMO

Essential oils (EOs) have risen in popularity over the past decade. These oils function in society as holistic integrative modalities to traditional medicinal treatments, where many Americans substitute EOs in place of other prescribed medications. EOs are found in a multitude of products including food flavoring, soaps, lotions, shampoos, hair styling products, cologne, laundry detergents, and even insect repellents. EOs are complex substances comprised of hundreds of components that can vary greatly in their composition depending upon the extraction process by the producer or the origin of the plant. Thus, making it difficult to determine which pathways in the body are affected. Here, we review the published research that shows the health benefits of EOs as well as some of their adverse effects. In doing so, we show that EOs, as well as some of their individual components, possess antimicrobial, antiviral, antibiotic, anti-inflammatory, and antioxidant properties as well as purported psychogenic effects such as relieving stress, treating depression, and aiding with insomnia. Not only do we show the health benefits of using EOs, but we also indicate risks associated with their use such as their endocrine disrupting properties leading to the induction of premature breast growth in young adolescents. Taken together, there are many positive and potentially negative risks to human health associated with EOs, which make it important to bring awareness to all their known effects on the human body.


Assuntos
Aromaterapia/métodos , Óleos Voláteis , Humanos , Medicina Tradicional/métodos , Óleos Voláteis/efeitos adversos , Óleos Voláteis/farmacologia , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...